Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Braz J Biol ; 84: e281286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629678

RESUMO

Salinity reduces feijão-caupi production, and the search for tolerant varieties becomes important within the agricultural context, as, in addition to being used in the field, they can be used in genetic improvement. The objective was to for a identify variety that is tolerant to salinity considering the physiological quality of seeds and seedling growth. A 2 × 4 factorial scheme was used, referring to the varieties Pingo-de-ouro and Coruja, and four electrical conductivities of water (0; 3.3; 6.6 and 9.9 dS m-1). The physiological quality of seeds and the growth of seedlings were analyzed, in addition to the cumulative germination. The Pingo-de-ouro variety showed no germination, length of the shoot and root, dry mass of the shoot and root compromised up to electrical conductivity of 6 dS m-1 in relation to 0.0 dS m-1. On the other hand, the Coruja variety showed reduced germination, increased shoot and root length. The creole variety Pingo-de-ouro proved to be tolerant to salinity.


Assuntos
Vigna , Vigna/genética , Salinidade , Cloreto de Sódio , Plântula , Germinação/fisiologia , Sementes/fisiologia
2.
Sci Rep ; 14(1): 9378, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654029

RESUMO

Uneven rainfall and high temperature cause drought in tropical and subtropical regions which is a major challenge to cultivating summer mung bean. Potassium (K), a major essential nutrient of plants can alleviate water stress (WS) tolerance in plants. A field trial was executed under a rainout shelter with additional K fertilization including recommended K fertilizer (RKF) for relieving the harmful impact of drought in response to water use efficiency (WUE), growth, yield attributes, nutrient content, and yield of mung bean at the Regional Agricultural Research Station, BARI, Ishwardi, Pabna in two successive summer season of 2018 and 2019. Drought-tolerant genotype BMX-08010-2 (G1) and drought-susceptible cultivar BARI Mung-1 (G2) were grown by applying seven K fertilizer levels (KL) using a split-plot design with three replications, where mung bean genotypes were allotted in the main plots, and KL were assigned randomly in the sub-plots. A considerable variation was observed in the measured variables. Depending on the different applied KL and seed yield of mung bean, the water use efficiency (WUE) varied from 4.73 to 8.14 kg ha-1 mm-1. The treatment applying 125% more K with RKF (KL7) under WS gave the maximum WUE (8.14 kg ha-1 mm-1) obtaining a seed yield of 1093.60 kg ha-1. The treatment receiving only RKF under WS (KL2) provided the minimum WUE (4.73 kg ha-1 mm-1) attaining a seed yield of 825.17 kg ha-1. Results showed that various characteristics including nutrients (N, P, K, and S) content in stover and seed, total dry matter (TDM) in different growth stages, leaf area index (LAI), crop growth rate (CGR), root volume (RV), root density (RD), plant height, pod plant-1, pod length, seeds pod-1, seed weight, and seed yield in all pickings increased with increasing K levels, particularly noted with KL7. The highest grain yield (32.52%) was also obtained from KL7 compared to lower K with RKF. Overall, yield varied from 1410.37 kg ha-1 using 281 mm water (KL1; well-watered condition with RKF) to 825.17 kg ha-1 using 175 mm water (KL2). The results exhibited that the application of additional K improves the performance of all traits under WS conditions. Therefore, mung beans cultivating under WS requires additional K to diminish the negative effect of drought, and adequate use of K contributes to accomplishing sustainable productivity.


Assuntos
Secas , Potássio , Vigna , Vigna/crescimento & desenvolvimento , Vigna/genética , Vigna/efeitos dos fármacos , Potássio/metabolismo , Água/metabolismo , Fertilizantes , Nutrientes/metabolismo , Genótipo , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Desidratação , Resistência à Seca
3.
BMC Genomics ; 25(1): 270, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475739

RESUMO

BACKGROUND: Mung bean (Vigna radiata (L.) Wilczek), is an important pulse crop in the global south. Early flowering and maturation are advantageous traits for adaptation to northern and southern latitudes. This study investigates the genetic basis of the Days-to-Flowering trait (DTF) in mung bean, combining genome-wide association studies (GWAS) in mung bean and comparisons with orthologous genes involved with control of DTF responses in soybean (Glycine max (L) Merr) and Arabidopsis (Arabidopsis thaliana). RESULTS: The most significant associations for DTF were on mung bean chromosomes 1, 2, and 4. Only the SNPs on chromosomes 1 and 4 were heavily investigated using downstream analysis. The chromosome 1 DTF association is tightly linked with a cluster of locally duplicated FERONIA (FER) receptor-like protein kinase genes, and the SNP occurs within one of the FERONIA genes. In Arabidopsis, an orthologous FERONIA gene (AT3G51550), has been reported to regulate the expression of the FLOWERING LOCUS C (FLC). For the chromosome 4 DTF locus, the strongest candidates are Vradi04g00002773 and Vradi04g00002778, orthologous to the Arabidopsis PhyA and PIF3 genes, encoding phytochrome A (a photoreceptor protein sensitive to red to far-red light) and phytochrome-interacting factor 3, respectively. The soybean PhyA orthologs include the classical loci E3 and E4 (genes GmPhyA3, Glyma.19G224200, and GmPhyA2, Glyma.20G090000). The mung bean PhyA ortholog has been previously reported as a candidate for DTF in studies conducted in South Korea. CONCLUSION: The top two identified SNPs accounted for a significant proportion (~ 65%) of the phenotypic variability in mung bean DTF by the six significant SNPs (39.61%), with a broad-sense heritability of 0.93. The strong associations of DTF with genes that have orthologs with analogous functions in soybean and Arabidopsis provide strong circumstantial evidence that these genes are causal for this trait. The three reported loci and candidate genes provide useful targets for marker-assisted breeding in mung beans.


Assuntos
Arabidopsis , Fabaceae , Vigna , Vigna/genética , Estudo de Associação Genômica Ampla , Arabidopsis/genética , Melhoramento Vegetal , Fabaceae/genética , Soja , Genômica
4.
Genes (Basel) ; 15(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540367

RESUMO

Black gram (Vigna mungo (L.) Hepper) is a pulses crop with good digestible protein and a high carbohydrate content, so it is widely consumed as human food and animal feed. Trichomes are large, specialized epidermal cells that confer advantages on plants under biotic and abiotic stresses. Genes regulating the development of trichomes are well characterized in Arabidopsis and tomato. However, little is known about trichome development in black gram. In this study, a high-density map with 5734 bin markers using an F2 population derived from a trichome-bearing and a glabrous cultivar of black gram was constructed, and a major quantitative trait locus (QTL) related to trichomes was identified. Six candidate genes were located in the mapped interval region. Fourteen single-nucleotide polymorphisms (SNPs) or insertion/deletions (indels) were associated with those genes. One indel was located in the coding region of the gene designated as Scaffold_9372_HRSCAF_11447.164. Real-time quantitative PCR (qPCR) analysis demonstrated that only one candidate gene, Scaffold_9372_HRSCAF_11447.166, was differentially expressed in the stem between the two parental lines. These two candidate genes encoded the RNA polymerase-associated protein Rtf1 and Bromodomain adjacent to zinc finger domain protein 1A (BAZ1A). These results provide insights into the regulation of trichome development in black gram. The candidate genes may be useful for creating transgenic plants with improved stress resistance and for developing molecular markers for trichome selection in black gram breeding programs.


Assuntos
Vigna , Animais , Humanos , Vigna/genética , Tricomas/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Genes de Plantas , Proteínas que Contêm Bromodomínio , Proteínas Cromossômicas não Histona/genética
5.
Genes (Basel) ; 15(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540421

RESUMO

Cowpea (Vigna unguiculata L. Walp) is an important grain legume crop of the subtropics, particularly in West Africa, where it contributes to the livelihoods of small-scale farmers. Despite being a drought-resilient crop, cowpea production is hampered by insect pests, diseases, parasitic weeds, and various abiotic stresses. Genetic improvement can help overcome these limitations, and exploring diverse cowpea genetic resources is crucial for cowpea breeding. This study evaluated the genetic diversity of 361 cowpea accessions from the USDA core collection for the species using 102 Kompetitive Allele Specific PCR (KASP) single nucleotide polymorphism (SNP) markers. A total of 102 KASP-SNP was validated in the germplasm panel, and 72 showed polymorphism across the germplasm panel. The polymorphism information content (PIC) of all SNPs ranged from 0.1 to 0.37, with an average of 0.29, while the mean observed heterozygosity was 0.52. The population structure revealed three distinct populations that clustered into two major groups after phylogenetic analysis. Analysis of molecular variance (AMOVA) indicated greater genetic variation within populations than among populations. Although cowpea generally has a narrow genetic diversity, the accessions used in this study exhibited considerable variation across geographical regions, sub-species, and improvement status. These results indicated that the selected KASP genotyping assay can provide robust and accurate genotyping data for application in the selection and management of cowpea germplasm in breeding programs and genebanks.


Assuntos
Vigna , Estados Unidos , Vigna/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Alelos , United States Department of Agriculture , Melhoramento Vegetal , Reação em Cadeia da Polimerase
6.
BMC Genomics ; 25(1): 149, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321384

RESUMO

BACKGROUND: The mediator complex subunits (MED) constitutes a multiprotein complex, with each subunit intricately involved in crucial aspects of plant growth, development, and responses to stress. Nevertheless, scant reports pertain to the VunMED gene within the context of asparagus bean (Vigna unguiculata ssp. sesquipedialis). Establishing the identification and exploring the responsiveness of VunMED to cold stress forms a robust foundation for the cultivation of cold-tolerant asparagus bean cultivars. RESULTS: Within this study, a comprehensive genome-wide identification of VunMED genes was executed in the asparagus bean cultivar 'Ningjiang3', resulting in the discovery of 36 distinct VunMED genes. A phylogenetic analysis encompassing 232 MED genes from diverse species, including Arabidopsis, tomatoes, soybeans, mung beans, cowpeas, and asparagus beans, underscored the highly conserved nature of MED gene sequences. Throughout evolutionary processes, each VunMED gene underwent purification and neutral selection, with the exception of VunMED19a. Notably, VunMED9/10b/12/13/17/23 exhibited structural variations discernible across four cowpea species. Divergent patterns of temporal and spatial expression were evident among VunMED genes, with a prominent role attributed to most genes during early fruit development. Additionally, an analysis of promoter cis-acting elements was performed, followed by qRT-PCR assessments on roots, stems, and leaves to gauge relative expression after exposure to cold stress and subsequent recovery. Both treatments induced transcriptional alterations in VunMED genes, with particularly pronounced effects observed in root-based genes following cold stress. Elucidating the interrelationships between subunits involved a preliminary understanding facilitated by correlation and principal component analyses. CONCLUSIONS: This study elucidates the pivotal contribution of VunMED genes to the growth, development, and response to cold stress in asparagus beans. Furthermore, it offers a valuable point of reference regarding the individual roles of MED subunits.


Assuntos
Fabaceae , Vigna , Vigna/genética , Filogenia , Resposta ao Choque Frio , Complexo Mediador/genética , Fabaceae/genética
7.
Sci Rep ; 14(1): 3189, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326435

RESUMO

Feeding billions, a healthy and nutritious diet in the era of climate change is a major challenge before plant breeders, geneticists and agronomist. In this context, the continuous search for adaptive and nutritious crops could be a better alternative to combat the problems of hunger and malnutrition. The zombi pea, a nutritious and underutilized leguminous vegetable, is one of such better alternatives to feed billions a nutritious food besides being a potential gene source for breeding abiotic stress resistant varieties. To evaluate its potential as a wonder crop in the tropical and subtropical regions of India, the nutritional status of tubers, pods and pericarp were investigated under different treatments of plant spacings and deblossoming. The experiment was conducted in split plot design with three replications and eight treatments during 2021-2022 in the coastal regions of India. The nutrient profiling in tubers and pericarp of pods in zombi pea revealed higher accumulation of nutrients viz. potassium (K), magnesium (Mg), iron (Fe), manganese (Mn) and zinc (Zn) with blossom retention. The zombi pea tubers reflected significantly high protein accumulation with the increase in plant spacing. The results pertaining to nutrient profiling in the pods of zombi pea indicated that the plant spacing has no significant effect on the accumulation of majority of nutrients under study. The above-mentioned findings are conspicuously novel and valuable. The present study would pave the way for understanding nutritional importance and breeding potential of this orphan crop. The blossom retention renders higher nutrient accumulation in tubers, pods and pericarp of zombi pea. Deblossoming has no significant influence on nutritional profile of this wonder crop but, wider spacing is effective in producing tubers with high protein content.


Assuntos
Estado Nutricional , Vigna , Vigna/genética , Ervilhas/genética , Melhoramento Vegetal , Produtos Agrícolas/genética
8.
PeerJ ; 12: e16722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406271

RESUMO

Quantitative trait loci (QTL) mapping is used for the precise localization of genomic regions regulating various traits in plants. Two major QTLs regulating Soil Plant Analysis Development (SPAD) value (qSPAD-7-1) and trichome density (qTric-7-2) in mungbean were identified using recombinant inbred line (RIL) populations (PMR-1×Pusa Baisakhi) on chromosome 7. Functional analysis of QTL region identified 35 candidate genes for SPAD value (16 No) and trichome (19 No) traits. The candidate genes regulating trichome density on the dorsal leaf surface of the mungbean include VRADI07G24840, VRADI07G17780, and VRADI07G15650, which encodes for ZFP6, TFs bHLH DNA-binding superfamily protein, and MYB102, respectively. Also, candidate genes having vital roles in chlorophyll biosynthesis are VRADIO7G29860, VRADIO7G29450, and VRADIO7G28520, which encodes for s-adenosyl-L-methionine, FTSHI1 protein, and CRS2-associated factor, respectively. The findings unfolded the opportunity for the development of customized genotypes having high SPAD value and high trichome density having a possible role in yield and mungbean yellow vein mosaic India virus (MYMIV) resistance in mungbean.


Assuntos
Locos de Características Quantitativas , Vigna , Locos de Características Quantitativas/genética , Vigna/genética , Mapeamento Cromossômico , Genótipo , Solo , Tricomas/genética , Folhas de Planta/genética
9.
Sci Rep ; 14(1): 4567, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403625

RESUMO

Development of high yielding cowpea varieties coupled with good taste and rich in essential minerals can promote consumption and thus nutrition and profitability. The sweet taste of cowpea grain is determined by its sugar content, which comprises mainly sucrose and galacto-oligosaccharides (GOS) including raffinose and stachyose. However, GOS are indigestible and their fermentation in the colon can produce excess intestinal gas, causing undesirable bloating and flatulence. In this study, we aimed to examine variation in grain sugar and mineral concentrations, then map quantitative trait loci (QTLs) and estimate genomic-prediction (GP) accuracies for possible application in breeding. Grain samples were collected from a multi-parent advanced generation intercross (MAGIC) population grown in California during 2016-2017. Grain sugars were assayed using high-performance liquid chromatography. Grain minerals were determined by inductively coupled plasma-optical emission spectrometry and combustion. Considerable variation was observed for sucrose (0.6-6.9%) and stachyose (2.3-8.4%). Major QTLs for sucrose (QSuc.vu-1.1), stachyose (QSta.vu-7.1), copper (QCu.vu-1.1) and manganese (QMn.vu-5.1) were identified. Allelic effects of major sugar QTLs were validated using the MAGIC grain samples grown in West Africa in 2017. GP accuracies for minerals were moderate (0.4-0.58). These findings help guide future breeding efforts to develop mineral-rich cowpea varieties with desirable sugar content.


Assuntos
Locos de Características Quantitativas , Vigna , Locos de Características Quantitativas/genética , Vigna/genética , Açúcares , Melhoramento Vegetal , Minerais , Grão Comestível/genética , Genômica , Sacarose
10.
Mol Biol Rep ; 51(1): 51, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165511

RESUMO

BACKGROUND: Reactive Red (RR) 141 dye is widely used in various industrial applications, but its environmental impact remains a growing concern. In this study, the phytotoxic and genotoxic effects of RR 141 dye on mung bean seedlings (Vigna radiata (L.) Wilczek) were investigated, serving as a model for potential harm to plant systems. METHODS AND RESULTS: Short-term (14 days) and long-term (60 days) experiments in paddy soil pot culture exposed mung bean seedlings to RR 141 dye. The dye delayed germination and hindered growth, significantly reducing germination percentage and seedling vigor index (SVI) at concentrations of 50 and 100 ml/L. In short-term exposure, plumule and radical lengths dose-dependently decreased, while long-term exposure affected plant length and grain weight, leaving pod-related parameters unaffected. To evaluate genotoxicity, high annealing temperature-random amplified polymorphic DNA (HAT-RAPD) analysis was employed with five RAPD primers having 58-75% GC content. It detected polymorphic band patterns, generating 116 bands (433 to 2857 bp) in plant leaves exposed to the dye. Polymorphisms indicated the appearance/disappearance of DNA bands in both concentrations, with decreased genomic template stability (GTS) values suggesting DNA damage and mutation. CONCLUSION: These findings demonstrate that RR 141 dye has a significant impact on genomic template stability (GTS) and exhibits phytotoxic and genotoxic responses in mung bean seedlings. This research underscores the potential of RR 141 dye to act as a harmful agent within plant model systems, highlighting the need for further assessment of its environmental implications.


Assuntos
Alcaloides , Vigna , Vigna/genética , Plântula , Técnica de Amplificação ao Acaso de DNA Polimórfico , Dano ao DNA , DNA
11.
PeerJ ; 12: e16653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288464

RESUMO

Yellow mosaic disease (YMD) remains a major constraint in mungbean (Vigna radiata (L.)) production; while short-duration genotypes offer multiple crop cycles per year and help in escaping terminal heat stress, especially during summer cultivation. A comprehensive genotyping by sequencing (GBS)-based genome-wide association studies (GWAS) analysis was conducted using 132 diverse mungbean genotypes for traits like flowering time, YMD resistance, soil plant analysis development (SPAD) value, trichome density, and leaf area. The frequency distribution revealed a wide range of values for all the traits. GBS studies identified 31,953 high-quality single nucleotide polymorphism (SNPs) across all 11 mungbean chromosomes and were used for GWAS. Structure analysis revealed the presence of two genetically distinct populations based on ΔK. The linkage disequilibrium (LD) varied throughout the chromosomes and at r2 = 0.2, the mean LD decay was estimated as 39.59 kb. Two statistical models, mixed linear model (MLM) and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) identified 44 shared SNPs linked with various candidate genes. Notable candidate genes identified include FPA for flowering time (VRADI10G01470; chr. 10), TIR-NBS-LRR for mungbean yellow mosaic India virus (MYMIV) resistance (VRADI09G06940; chr. 9), E3 ubiquitin-protein ligase RIE1 for SPAD value (VRADI07G28100; chr. 11), WRKY family transcription factor for leaf area (VRADI03G06560; chr. 3), and LOB domain-containing protein 21 for trichomes (VRADI06G04290; chr. 6). In-silico validation of candidate genes was done through digital gene expression analysis using Arabidopsis orthologous (compared with Vigna radiata genome). The findings provided valuable insight for marker-assisted breeding aiming for the development of YMD-resistant and early-maturing mungbean varieties.


Assuntos
Vigna , Vigna/genética , Estudo de Associação Genômica Ampla , Genótipo , Teorema de Bayes , Melhoramento Vegetal
12.
Theor Appl Genet ; 137(1): 29, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261028

RESUMO

KEY MESSAGE: Inversions and translocations are the major chromosomal rearrangements involved in Vigna subgenera evolution, being Vigna vexillata the most divergent species. Centromeric repositioning seems to be frequent within the genus. Oligonucleotide-based fluorescence in situ hybridization (Oligo-FISH) provides a powerful chromosome identification system for inferring plant chromosomal evolution. Aiming to understand macrosynteny, chromosomal diversity, and the evolution of bean species from five Vigna subgenera, we constructed cytogenetic maps for eight taxa using oligo-FISH-based chromosome identification. We used oligopainting probes from chromosomes 2 and 3 of Phaseolus vulgaris L. and two barcode probes designed from V. unguiculata (L.) Walp. genome. Additionally, we analyzed genomic blocks among the Ancestral Phaseoleae Karyotype (APK), two V. unguiculata subspecies (V. subg. Vigna), and V. angularis (Willd.) Ohwi & Ohashi (V. subg. Ceratotropis). We observed macrosynteny for chromosomes 2, 3, 4, 6, 7, 8, 9, and 10 in all investigated taxa except for V. vexillata (L.) A. Rich (V. subg. Plectrotropis), in which only chromosomes 4, 7, and 9 were unambiguously identified. Collinearity breaks involved with chromosomes 2 and 3 were revealed. We identified minor differences in the painting pattern among the subgenera, in addition to multiple intra- and interblock inversions and intrachromosomal translocations. Other rearrangements included a pericentric inversion in chromosome 4 (V. subg. Vigna), a reciprocal translocation between chromosomes 1 and 5 (V. subg. Ceratotropis), a potential deletion in chromosome 11 of V. radiata (L.) Wilczek, as well as multiple intrablock inversions and centromere repositioning via genomic blocks. Our study allowed the visualization of karyotypic patterns in each subgenus, revealing important information for understanding intrageneric karyotypic evolution, and suggesting V. vexillata as the most karyotypically divergent species.


Assuntos
Phaseolus , Vigna , Vigna/genética , Hibridização in Situ Fluorescente , Translocação Genética , Rearranjo Gênico , Phaseolus/genética
13.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923361

RESUMO

Eukaryotic genomes show an intricate three-dimensional (3D) organization within the nucleus that regulates multiple biological processes including gene expression. Contrary to animals, understanding of 3D genome organization in plants remains at a nascent stage. Here, we investigate the evolution of 3D chromatin architecture in legumes. By using cutting-edge PacBio, Illumina, and Hi-C contact reads, we report a gap-free, chromosome-scale reference genome assembly of Vigna mungo, an important minor legume cultivated in Southeast Asia. We spatially resolved V. mungo chromosomes into euchromatic, transcriptionally active A compartment and heterochromatic, transcriptionally-dormant B compartment. We report the presence of TAD-like-regions throughout the diagonal of the HiC matrix that resembled transcriptional quiescent centers based on their genomic and epigenomic features. We observed high syntenic breakpoints but also high coverage of syntenic sequences and conserved blocks in boundary regions than in the TAD-like region domains. Our findings present unprecedented evolutionary insights into spatial 3D genome organization and epigenetic patterns and their interaction within the V. mungo genome. This will aid future genomics and epigenomics research and breeding programs of V. mungo.


Assuntos
Herpestidae , Vigna , Animais , Epigenômica , Vigna/genética , Herpestidae/genética , Genoma , Epigênese Genética/genética
14.
Food Chem ; 439: 138129, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100876

RESUMO

Heat-treated adzuki bean protein hydrolysates exhibit lipid-reducing properties; however, few studies have reported pancreatic lipase (PL) and cholesterol esterase (CE) inhibitory effects and elucidated the underlying mechanisms. In this study, we accomplished the identification of antiobesity peptides through peptide sequencing, virtual screening, and in vitro experiments. Furthermore, the mechanisms were investigated via molecular docking. The findings reveal that the action of pepsin and pancreatin resulted in the transformation of intact adzuki bean protein into smaller peptide fragments. The < 3 kDa fraction exhibited a high proportion of hydrophobic amino acids and displayed superior inhibitory properties for both PL and CE. Five novel antiobesity peptides (LLGGLDSSLLPH, FDTGSSFYNKPAG, IWVGGSGMDM, YLQGFGKNIL, and IFNNDPNNHP) were identified as PL and CE inhibitors. Particularly, IFNNDPNNHP exhibited the most robust biological activity. These peptides exerted their inhibitory action on PL and CE by occupying catalytic or substrate-binding sites through hydrogen bonds, hydrophobic interactions, salt bridges, and π-π stacking.


Assuntos
Vigna , Vigna/genética , Vigna/metabolismo , Esterol Esterase , Hidrolisados de Proteína/química , Simulação de Acoplamento Molecular , Temperatura Alta , Lipase/química , Peptídeos/química
15.
Insect Biochem Mol Biol ; 165: 104060, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123026

RESUMO

Aphid salivary proteins mediate the interaction between aphids and their host plants. Moreover, these proteins facilitate digestion, detoxification of secondary metabolites, as well as activation and suppression of plant defenses. The cowpea aphid, Aphis craccivora, is an important sucking pest of leguminous crops worldwide. Although aphid saliva plays an important role in aphid plant interactions, knowledge of the cowpea aphid salivary proteins is limited. In this study, we performed transcriptomic and LC-MS/MS analyses to identify the proteins present in the salivary glands and saliva of A. craccivora. A total of 1,08,275 assembled transcripts were identified in the salivary glands of aphids. Of all these assembled transcripts, 53,714 (49.11%) and 53,577 (49.48%) transcripts showed high similarity to known proteins in the Nr and UniProt databases, respectively. A total of 2159 proteins were predicted as secretory proteins from the salivary gland transcriptome dataset, which contain digestive enzymes, detoxification enzymes, previously known effectors and elicitors, and potential proteins whose functions have yet to be determined. The proteomic analysis of aphid saliva resulted in the identification of 171 proteins. Tissue-specific expression of selected genes using RT-PCR showed that three genes were expressed only in the salivary glands. Overall, our results provide a comprehensive repertoire of cowpea aphid salivary proteins from the salivary gland and saliva, which will be a good resource for future effector functional studies and might also be useful for sustainable aphid management.


Assuntos
Afídeos , Vigna , Animais , Transcriptoma , Afídeos/genética , Afídeos/metabolismo , Vigna/genética , 60705 , Cromatografia Líquida , Proteômica/métodos , Espectrometria de Massas em Tandem , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo
16.
Biomed Res Int ; 2023: 8832406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046903

RESUMO

In different regions of the world, cowpea (Vigna unguiculata (L.) Walp.) is an important vegetable and an excellent source of protein. It lessens the malnutrition of the underprivileged in developing nations and has some positive effects on health, such as a reduction in the prevalence of cancer and cardiovascular disease. However, occasionally, certain biotic and abiotic stresses caused a sharp fall in cowpea yield. Major RNA interference (RNAi) genes like Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) are essential for the synthesis of their associated factors like domain, small RNAs (sRNAs), transcription factors, micro-RNAs, and cis-acting factors that shield plants from biotic and abiotic stresses. In this study, applying BLASTP search and phylogenetic tree analysis with reference to the Arabidopsis RNAi (AtRNAi) genes, we discovered 28 VuRNAi genes, including 7 VuDCL, 14 VuAGO, and 7 VuRDR genes in cowpea. We looked at the domains, motifs, gene structures, chromosomal locations, subcellular locations, gene ontology (GO) terms, and regulatory factors (transcription factors, micro-RNAs, and cis-acting elements (CAEs)) to characterize the VuRNAi genes and proteins in cowpea in response to stresses. Predicted VuDCL1, VuDCL2(a, b), VuAGO7, VuAGO10, and VuRDR6 genes might have an impact on cowpea growth, development of the vegetative and flowering stages, and antiviral defense. The VuRNAi gene regulatory features miR395 and miR396 might contribute to grain quality improvement, immunity boosting, and pathogen infection resistance under salinity and drought conditions. Predicted CAEs from the VuRNAi genes might play a role in plant growth and development, improving grain quality and production and protecting plants from biotic and abiotic stresses. Therefore, our study provides crucial information about the functional roles of VuRNAi genes and their associated components, which would aid in the development of future cowpeas that are more resilient to biotic and abiotic stress. The manuscript is available as a preprint at this link: doi:10.1101/2023.02.15.528631v1.


Assuntos
MicroRNAs , Vigna , Vigna/genética , Interferência de RNA , Filogenia , Regulação da Expressão Gênica de Plantas/genética , Plantas Geneticamente Modificadas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/genética
17.
PLoS One ; 18(12): e0295509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096151

RESUMO

Cowpea (Vigna unguiculata (L.) Walp) is one of the major food legume crops grown extensively in arid and semi-arid regions of the world. The determinate habit of cowpea has many advantages over the indeterminate and is well adapted to modern farming systems. Mutation breeding is an active research area to develop the determinate habit of cowpea. The present study aimed to develop new determinate habit mutants with terminal flowering (TFL) in locally well-adapted genetic backgrounds. Consequently, the seeds of popular cowpea cv P152 were irradiated with doses of gamma rays (200, 250, and, 300 Gy), and the M1 populations were grown. The M2 populations were produced from the M1 progenies and selected determinate mutants (TFLCM-1 and TFLCM-2) from the M2 generation (200 Gy) were forwarded up to the M5 generation to characterize the mutants and simultaneously they were crossed with P152 to develop a MutMap population. In the M5 generation, determinate mutants (80-81 days) were characterized by evaluating the TFL growth habit, longer peduncles (30.75-31.45 cm), erect pods (160°- 200°), number of pods per cluster (4-5 nos.), and early maturity. Further, sequencing analysis of the VuTFL1 gene in the determinate mutants and MutMap population revealed a single nucleotide transversion (A-T at 1196 bp) in the fourth exon and asparagine (N) to tyrosine (Y) amino acid change at the 143rd position of phosphatidylethanolamine-binding protein (PEBP). Notably, the loss of function PEPB with a higher confidence level modification of anti-parallel beta-sheets and destabilization of the protein secondary structure was observed in the mutant lines. Quantitative real-time PCR (qRT-PCR) analysis showed that the VuTFL1 gene was downregulated at the flowering stage in TFL mutants. Collectively, the insights garnered from this study affirm the effectiveness of induced mutation in modifying the plant's ideotype. The TFL mutants developed during this investigation have the potential to serve as a valuable resource for fostering determinate traits in future cowpea breeding programs and pave the way for mechanical harvesting.


Assuntos
Vigna , Vigna/genética , Proteína de Ligação a Fosfatidiletanolamina/genética , Melhoramento Vegetal , Mutagênese , Mutação
18.
Sci Rep ; 13(1): 22951, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135720

RESUMO

The genomic structures of Vigna hirtella Ridl. and Vigna trinervia (B.Heyne ex Wight & Arn.) Tateishi & Maxted, key ancestral species of the allotetraploid Vigna reflexo-pilosa var. glabra (Roxb.) N.Tomooka & Maxted, remain poorly understood. This study presents a comprehensive genomic comparison of these species to deepen our knowledge of their evolutionary trajectories. By comparing the genomic profiles of V. hirtella and V. trinervia with those of V. reflexo-pilosa, we investigate the complex genomic mechanisms underlying allopolyploid evolution within the genus Vigna. Comparison of the chloroplast genome revealed that V. trinervia is closely related to V. reflexo-pilosa. De novo assembly of the whole genome, followed by synteny analysis and Ks value calculations, confirms that V. trinervia is closely related to the A genome of V. reflexo-pilosa, and V. hirtella to its B genome. Furthermore, the comparative analyses reveal that V. reflexo-pilosa retains residual signatures of a previous polyploidization event, particularly evident in higher gene family copy numbers. Our research provides genomic evidence for polyploidization within the genus Vigna and identifies potential donor species of allotetraploid species using de novo assembly techniques. Given the Southeast Asian distribution of both V. hirtella and V. trinervia, natural hybridization between these species, with V. trinervia as the maternal ancestor and V. hirtella as the paternal donor, seems plausible.


Assuntos
Fabaceae , Vigna , Vigna/genética , Fabaceae/genética , Filogenia , Sintenia , Genoma de Planta
19.
BMC Plant Biol ; 23(1): 539, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923986

RESUMO

Combining ability is referred to as the hybridization value of the parental genotypes involved in the crossing to develop hybrids. The best parents are selected through combining ability methods and subsequently used to produce high yielding and resistant hybrids. Thus, the objectives of this study were to (i) understand the nature and action of genes controlling water deficit tolerance, and (ii) identify superior genotypes from the genetic breadth provided by hybridization in cowpea. Twenty-four genotypes were subjected to normal irrigation and water deficit condition to examine combining ability, genotypic and phenotypic correlations for traits directly related to water deficit (proline and chlorophylls), grain yield and yield components. The results showed the presence of the action of additive and non-additive genes under both water regime conditions. However, there was the predominance of the action of additive genes for most of the traits studied under both conditions. The parents KVX61-1, IT06K242-3, IT07K-211-1-8, Kpodjiguèguè, IT99K-573-1-1, Tawa and IT97K-206-1-1 were observed to be good general combiners for proline content, chlorophyll content and traits associated with yield, while KVX61-1 × KVX396-18, IT06K242-3 × KVX396-18, IT07K-211-1-1 × KVX396-18, Kpodjiguèguè x KVX396-18, KVX61 -1 × IT97K-206-1-1, IT06K242-3 × IT97K-206-1-1, IT07K-211-1-1 × IT97K-206-1-1 and Kpodjiguèguè x IT97K-206-1-1 were proven to be the best specific combiners for traits directly related to water deficit tolerance and yield. It should be noted that number of days to pod maturity, pod length, number of pods per plant and weight of hundred seeds were highly heritable traits in this study.


Assuntos
Vigna , Vigna/genética , Genótipo , Fenótipo , Água , Prolina
20.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894961

RESUMO

Cowpea (Vigna unguiculata (L.) Walp.) is a diploid legume crop used for human consumption, feed for livestock, and cover crops. Earlier reports have shown that salinity has been a growing threat to cowpea cultivation. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify SNP markers and to investigate candidate genes for salt tolerance in cowpea. A total of 331 cowpea genotypes were evaluated for salt tolerance by supplying a solution of 200 mM NaCl in our previous work. The cowpea panel was genotyped using a whole genome resequencing approach, generating 14,465,516 SNPs. Moreover, 5,884,299 SNPs were used after SNP filtering. GWAS was conducted on a total of 296 cowpea genotypes that have high-quality SNPs. BLINK was used for conducting GWAS. Results showed (1) a strong GWAS peak on an 890-bk region of chromosome 2 for leaf SPAD chlorophyll under salt stress in cowpea and harboring a significant cluster of nicotinamide adenine dinucleotide (NAD) dependent epimerase/dehydratase genes such as Vigun02g128900.1, Vigun02g129000.1, Vigun02g129100.1, Vigun02g129200.1, and Vigun02g129500.1; (2) two GWAS peaks associated with relative tolerance index for chlorophyll were identified on chromosomes 1 and 2. The peak on chromosome 1 was defined by a cluster of 10 significant SNPs mapped on a 5 kb region and was located in the vicinity of Vigun01g086000.1, encoding for a GATA transcription factor. The GWAS peak on chromosome 2 was defined by a cluster of 53 significant SNPs and mapped on a 68 bk region of chromosome 2, and (3) the highest GWAS peak was identified on chromosome 3, and this locus was associated with leaf score injury. This peak was within the structure of a potassium channel gene (Vigun03g144700.1). To the best of our knowledge, this is one the earliest reports on the salt tolerance study of cowpea using whole genome resequencing data.


Assuntos
Vigna , Humanos , Vigna/genética , Plântula/genética , Estudo de Associação Genômica Ampla , Tolerância ao Sal/genética , Clorofila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...